R820T High Performance Low Power Advanced Digital TV Silicon Tuner Datasheet

Rafael Suite 808, Building 53, No.195, Sec.4, Chung Hsing Road, Chutung, HsinChu 310, Taiwan, R.O.C. 310 台灣新竹縣竹東鎮中興路四段 195 號 53 館 808 室

Fax: 886-3-5820968

www.rafaelmicro.com

Ordering Information

Part Number	Description	Package Type
R820T	Digital TV Silicon Tuner	QFN 24

Contact Information:

Suite 808, Building 53, No. 195, Sec. 4, Chung Hsing Road

Chutung, HsinChu 310, Taiwan, R.O.C. www.rafaelmicro.com

Tel: 886-3-5820868 Fax: 886-3-5820968

Sales (Taiwan): 886-3-5820868 ext. 211 marshall.lee@rafaelmicro.com

Sales (China): 86-1360-2679953 jaff.wu@rafaelmicro.com

Application Engineering: 886-3-5820868 ext. 235 <u>vincent.huang@rafaelmicro.com</u>

Revision History

Revision	Description	Owner	Date
1.0	Preliminary Release	Vincent Huang	2011/9/14
1.1	Modify reference schematic	Vincent Huang	2011/11/16
1.2	Modify reference schematic	Vincent Huang	2011/11/30

© 2011 by Rafael Microelectronics, Inc.

All Rights Reserved.

Information in this document is provided in connection with **Rafael Microelectronics**, **Inc.** ("**Rafael Micro**") products. These materials are provided by **Rafael Micro** as a service to its customers and may be used for informational purposes only. **Rafael Micro** assumes no responsibility for errors or omissions in these materials. **Rafael Micro** may make changes to this document at any time, without notice. **Rafael Micro** advises all customers to ensure that they have the latest version of this document and to verify, before placing orders, that information being relied on is current and complete. **Rafael Micro** makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF **RAFAEL MICRO** PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. **RAFAEL MICRO** FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. **RAFAEL MICRO** SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

Rafael Micro products are not intended for use in medical, lifesaving or life sustaining applications. Rafael Micro customers using or selling Rafael Micro products for use in such applications do so at their own risk and agree to fully indemnify Rafael Micro for any damages resulting from such improper use or sale. Rafael Micro, logos and R820T are Trademarks of Rafael Microelectronic, Inc. Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners.

Confidentiality Agreement

- The Reader of this document acknowledges that the information provided by Rafael Microelectronics Inc. in this material is confidential. A non-disclosure agreement (NDA) between the Reader and Rafael Microelectronics, Inc. is signed. Therefore, Reader agrees not to disclose it without the express written permission of Rafael Microelectronics, Inc.. The watermark and DCN (document control number) have been set to track and to control the confidentiality process. If the Reader has not signed NDA or not specified by watermark and DCN. You are inappropriate to read or use this material. Please return this material immediately to Rafael Microelectronics, Inc..
- It is acknowledged by Reader that information to furnished in this material is in all respects confidential and proprietary in nature, other than information which is in the public domain through other means and that any disclosure or use of same by Reader, may cause serious damage to Rafael Microelectronics Inc..
- This is classified as a Security A document which is prohibited to re-distribute under any circumstances except for prior written permission by Rafael Microelectronics Inc.. Any Other use of this document is strictly prohibited, and a violation of law. The Reader of this document acknowledges that Rafael Microelectronics Inc. reserves legal rights to claim all damages caused by Reader's inappropriate use of this material.

Rafael Micro. and its logos are registered trademarks of Rafael Microelectronics, Inc..

R820T

High Performance Low Power Advanced Digital TV Silicon Tuner

General Description

In heritage from Rafael Micro's state-of-the-art architecture, the R820T digital silicon tuner achieves the lowest power consumption and the smallest font factor. R820T offers unmatchable RF performance for all digital broadcast television standards including DVB-T, ATSC, DMB-T, ISDB-T,. With innovative AccuTuneTM and TrueRFTM mechanisms, R820T provides superior performance in sensitivity, linearity, adjacent channel immunity, and image rejection. The chip embeds a smart power detector to optimize different input power scenarios as well as the spurious free dynamic range.

The R820T is a highly integrated silicon tuner that builds in low noise amplifier (LNA), mixer, fractional PLL, VGA, voltage regulator and tracking filter, eliminating the need for external SAW filters, LNA, balun, and LDO. Thanks the LNA architecture, R820T offers the lowest cost and high performance solution for digital TV application. On-chip LDO, high performance LNA, and small package enable R820T the perfect solution for both cost and font factor sensitive applications.

With proprietary GreenRF techniques, R820T achieves both high performance and the lowest power consumption which perfectly compliant with the worldwide trend. The R820T comes in a small and thin QFN RoHs compliant package.

Features

- Support all digital TV standards: DVB-T, ATSC, DTMB and ISDB-T.
- Lowest BOM cost WITHOUT external SAW filters,LNA, balun, LDO, and adjustable parts.
- Compliant with EN 300 744, Nordig 2.2, D-BOOK 7.0, ARIB B21, ABNT 15604, ATSC A74 and GB20600-2006
- ☐ Compliant with EN-55020, EN55013 and FCC
- ☐ Ultra low power consumption < 178mA
- Single power supply 3.3V
- 2-wired I2C interface
- 24-pin 4x4 QFN lead-free package

Applications

- □ Terrestrial Digital TV
- Desktop/Laptop PCTV, Mini-card, and USB peripherals
- Set Top Box
- Portable Media Player

Figure A: Example of DTV reception for PCTV Applications

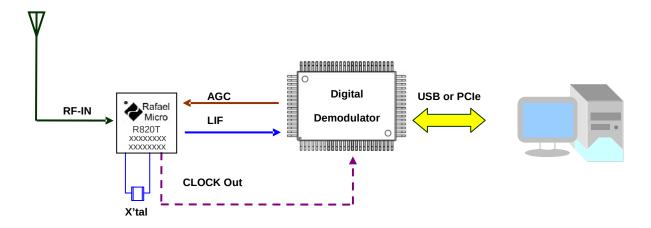


Figure B: Example of Set Top Box Applications

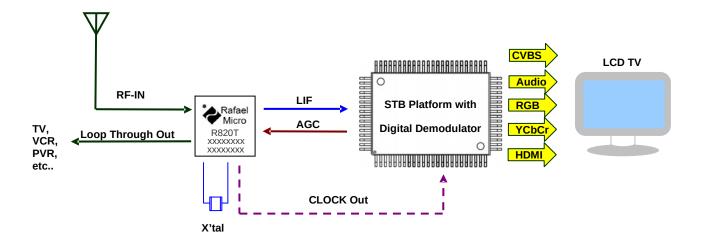
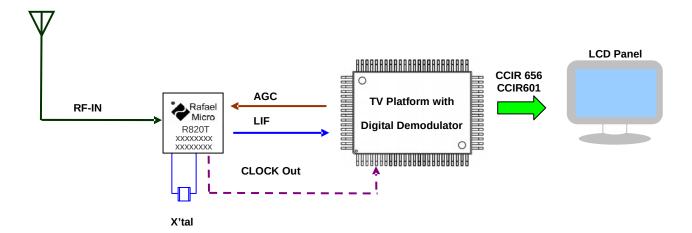
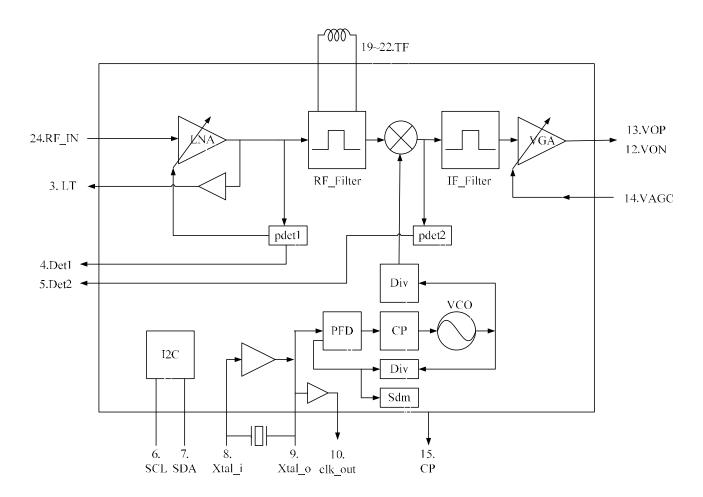




Figure C: Example of LCD TV Applications

Functional Block Diagram

Figure D: Simplified R820T Block Diagram

n Quick Reference Data

Typical figures

 $\mathring{\mathbb{R}}$ Frequency range: 42 to 1002 MHz $\mathring{\mathbb{R}}$ Noise figure : 3.5 dB @ RF_IN

 $\mathring{\mathbb{R}}$ Phase noise: -98 dBc/Hz @ 10 kHz

 $\mathring{\mathbb{R}}$ Current consumption: <178 mA @ 3.3V power supply

Max input power: +10 dBmMax input power: +10 dBmMax input power: 65 dBc

note: $[dBm]=[dBuV \text{ on } 75\Omega] -108.75dB$

Contents

Ge	neral	Description	4
Fea	atures		
Аp	plicat	ions	
Fui	nction	nal Block Diagram	7
1		trical Parameters	
	1.1	DC Parameters	11
	1.2	AC Parameters	
2	Pin I	Description	
3		ı ıramming and Registers	
	3.1	I2C Series Programming Interface	
4	Арр	lication Information	
	4.1	Application Circuit	
	4.2	Application Notes	
	4.3	IF Frequency	
	4.4	AGC Control	21
5	Pack	kage Dimensions and Outline	22
6		stal Requirements	
	6.1	Crystal Specifications	
	6.2	Clock Output Swing	
	6.3	Crystal Parallel Capacitors and Share Crystal	
7	Hard	lware Tolerance Specifications	

Figure

Figure A: Example of DTV reception for PCTV Applications	5
Figure B: Example of Set Top Box Applications	5
Figure C: Example of LCD TV Applications	6
Figure D: Simplified R820T Block Diagram	7
Figure 2-1 : Pin Allocation (note: E-Pad is GND)	13
Figure 3-1 : The Typical Write Mode Sequence	
Figure 3-2 : An Example of Write Mode Procedure	16
Figure 3-3 : The Typical Read Mode Sequence	17
Figure 3-4 : An Example of Read Mode Procedure	17
Figure 4-1 : Reference Application Schematic	18
Figure 4-2 : VGA Gain vs AGC control Voltage	
Figure 5-1 : Package Dimensions and Outline	
Figure 6-1 : Crystal Parallel Capacitors and Share Crystal	

Table

Table 1-1 : Electrical DC Parameters	11
Table 1-2 : Electrical AC Parameters	12
Table 2-1 : Summary List of Pin Assignment	
Table 3-1 : ² C Read / Write Address	
Table 4-1 : IF Frequency Table	
Table 6-1 : Crystal Specifications	
Table 6-2 : Clock Output Specifications	
Table 7-1 : Value and specification of Tracking filter inductors and RF input inductors	

1 Electrical Parameters

1.1 DC Parameters

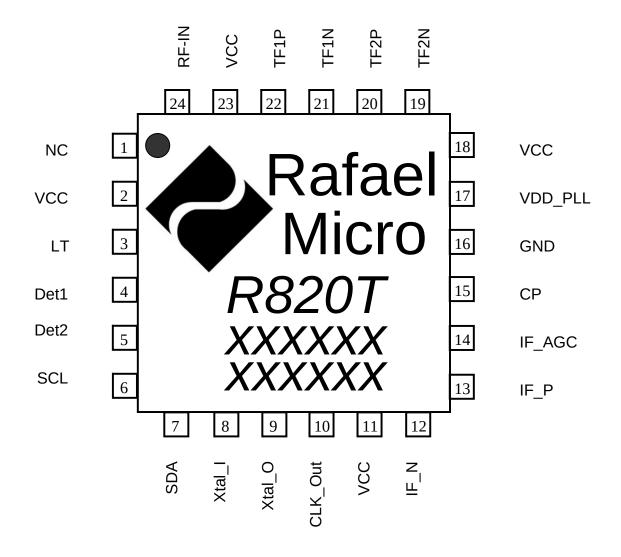
Table 1-1: Electrical DC Parameters

Parameters	Condition	Units	Min	Typical	Max
VCC Input voltage		V	3.0	3.3	3.6
Operation Temperature		°C	-20	25	85
Sleeping Mode Current	LT OFF	mA		9	
Standby Mode Current	LT ON	mA		64	
Total Current Consumption	After Programming	mA		178	195

1.2 AC Parameters

Table 1-2: Electrical AC Parameters

Parameters	Condition	Units	Min	Typical	Max
Input Return Loss ¹	S11	dB		-10	
Operation Frequency Range		MHz	42		1002
Voltage Gain		dB	85		95
AGC Range		dB		104	
Noise Figure	@ Max Gain	dB		3.5	
IIP3	LNA Max Gain	dBm		-7.5	
IIP3	LNA Min Gain	dBm		+35	
Image Rejection		dBc		65	
	1K	dBc		-91	
Phase Noise	10K	dBc		-98	
	100K	dBc		-109	
CSO	110 Channal at 75dBul/	dBc		-67	
СТВ	110 Channel at 75dBuV	dBc		-65	
Multiple Crystal Frequency	Refer to RF-In	dBm		-120	
Spurious	Relef to RF-III	ubili		-120	
RF in to Loop through gain ¹		dB		0	
Loop through Return loss ¹		dB		-13	
	FFT:8k,QPSK,CR:1/2	dBm		-97.5	
Sensitivity	FFT:8k,16QAM,CR:1/2	dBm		-91.5	
	FFT:8k,64QAM,CR:3/4	dBm		-81.5	
	FFT:8k,64QAM,CR:7/8	dBm		-79.5	
Adjacent Channel Rejection	Analog Interference at DVB-T	dBc		-47	
	Signal	ubc		-47	
Max. Input Power	FFT:8k,64QAM,CR:7/8	dBm		+10	
IF Output Level	Swing	Vp-p		1	2
	Impedence		Differ	ential 2kΩ	2//5pF
PLL Locking time		ms			5


Notes:

1. Network Analyzer Measurement Power : -20dBm

2 Pin Description

Pin Allocation

Figure 2-1: Pin Allocation (note: E-Pad is GND)

Pin Assignment

Table 2-1 : Summary List of Pin Assignment

Pin Number	Symbol	Description				
24	RF_In	RF Input				
1	NC	Not Connect				
2,11,18,23	vcc	Tuner 3.3V voltage input				
3	LT	Loop through output				
4,5	Detx	Power detector decoupling capacitor				
6	SCL	I2C bus, clock input				
7	SDA	I2C bus, data input/ output				
8	Xtal_I	Crystal oscillator Input				
9	Xtal_O	Crystal oscillator Output				
10	CLK_Out	Clock output for sharing Crystal oscillator				
12	IF_N	IF output				
13	IF_P	IF output				
14	IF_AGC	IF automatic gain control input				
15	СР	PLL charge pump				
17	VDD_PLL	PLL 2V supply output decoupling				
19,20,21,22	TFxx	Tracking filter, the detail as Figure 2-1: Pin Allocation.				
16	GND	Ground				
0	GND	Exposed pad				

3 Programming and Registers

3.1 <u>I2C Series Programming Interface</u>

The programmable features of the R820T are accessible through an I2C compatible serial interface. Bi-directional data transfers are programmed through the serial clock (SCL) and serial data lines (SDA) at a standard clock rate of 100 KHz and up to 400KHz.

Data Transfer Logic

The I²C control byte includes a fixed 7-bit slave address ID and a read/write (R/W) bit. Fixed I ²C slave address ID 0011010 (0x1A) is used for default setting. The R/W bit is set 0 for write and 1 for read (Table 3-1). Write mode and read mode will be further explained in the following sections.

I²C Write/Read Address

Table 3-1: ²C Read / Write Address

I ² C Mode			I ² C A	R/W	Address (Hex)				
1 C Mode	MSB							LSB	
Write Mode	0	0	1	1	0	1	0	0	0x34
Read Mode	0	0	1	1	0	1	0	1	0x35

Write Mode

When the slave address matches the I 2 C device ID with write control bit , I 2 C start interprets the following first byte as first written register address. These following bytes are all the register data (page write I 2 C control). Register 0 to Register 4 are reserved for internal use only and can be written by I 2 C write command.

Figure 3-1: The Typical Write Mode Sequence

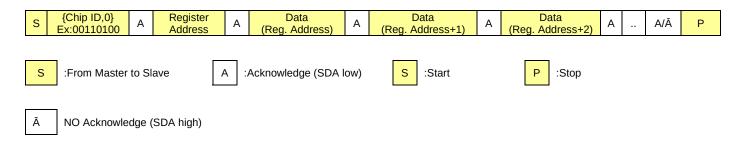
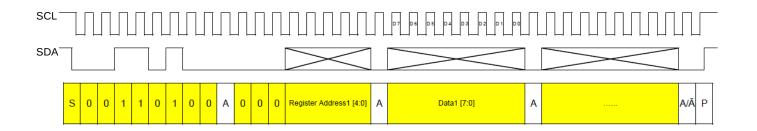



Figure 3-2: An Example of Write Mode Procedure

Read Mode

When the slave address matches the I ²C device ID with read control bit, data are immediately transferred after ack command. Reading data transmission begins from core register 0 to final register until "P"(STOP) occurs. The data is transmitted from LSB to MSB, and the data of register 0 (0x96) is fixed as reference check point for read mode.

Figure 3-3: The Typical Read Mode Sequence

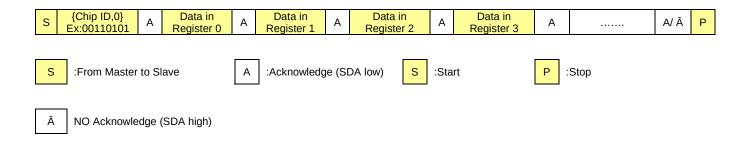
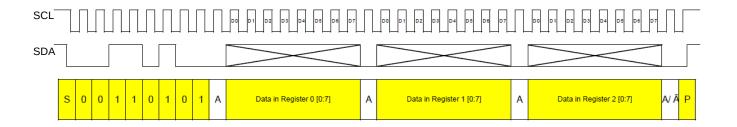
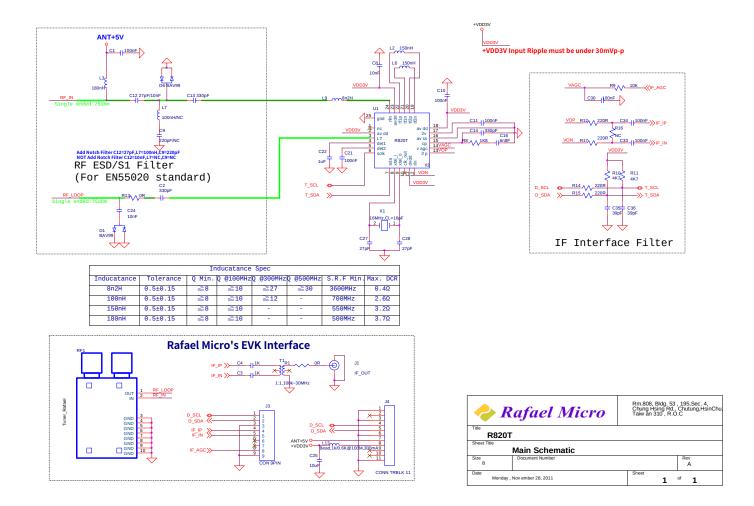



Figure 3-4: An Example of Read Mode Procedure



4 Application Information

4.1 **Application Circuit**

Please contact Rafael Micro System Integration Engineering for the detailed application circuit and BOM list. For different system applications, Rafael Micro provides customized engineering services to from reference design, RF layout, Gerber file, to PCB review. These engineering services are recognized as a great value to shorten time to market cycle.

Figure 4-1: Reference Application Schematic

4.2 **Application Notes**

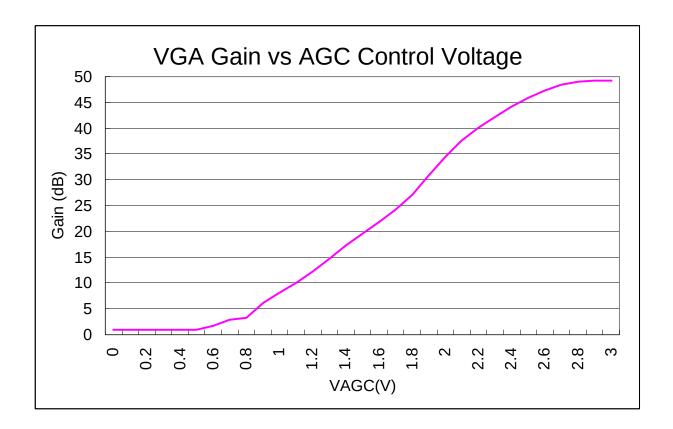
Please contact Rafael Micro Application Engineering for the detailed layout application note. The following guidelines together with proper implementation should be considered in board level layout to achieve the best performance.

- 1. To improve ESD/EOS reliability, RF input port and I2C bus needs an ESD protection circuit.
- 2. Minimize the RF trace from RF connector to device RF input pin..
- 3. RF traces should be protected with ground traces and guard rings.
- 4. Shielded connectors should be used with all shields connected to the ground plane with low impedance connections.
- 5. Minimize the ground path to device E-pad for the crystal.
- 6. Place crystal should be far away from RF traces.
- 7. Crystal traces should be protected with ground traces and guard rings.
- 8. The crystal amplifier oscillator has a dedicated power supply pin (Pin11), which should be carefully decoupled to ground with minimal lead lengths in order to minimize board noise from coupling into the reference clock.
- 9. System clocks and frequently switched signals should not be routed close to the crystal and RF trace.
- 10. Place AGC filter and CP filter circuits as close to the device as possible.
- 11. Minimize the CP filter ground path to device E-pad.
- 12. System digital traces should be routed away from RF traces.
- 13. Place ceramic DC bypass capacitors as close to the device as possible. This will insure that the power goes through the capacitors before power goes through the VIAs to the power plane
- 14. If possible power and ground should be on separate dedicated layers.

4.3 IF Frequency

R820T receives RF signal and feed through internal low-noise amplifier, power detector, band-pass filter, and image rejection filter. The mixer down-converts the RF signal to a low-IF frequency, which depends on channel bandwidth in different applications. The standard IF filters are implemented for 6/7/8 MHz channel bandwidths.

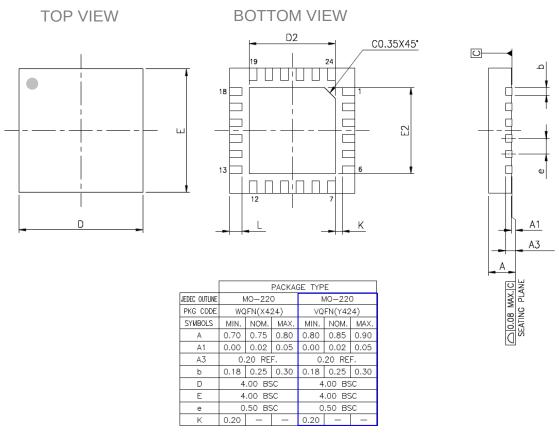
Table 4-1: IF Frequency Table


	TV Standard	Channel BW	Center Frequency
1	ATSC (Digital)	BW = 6MHz	Fcenter= 4.063MHz
2	DVB-T (Digital)	BW = 6MHz	Fcenter= 3.57MHz
3	DVB-T (Digital)	BW = 7MHz	Fcenter= 4.07MHz
4	DVB-T (Digital)	BW = 7MHz	Fcenter= 4.57MHz
5	DVB-T (Digital)	BW = 8MHz	Fcenter= 4.57MHz
7	ISDB-T (Digital)	BW = 6MHz	Fcenter = 4.063MHz
8	DTMB (Digital)	BW = 8MHz	Fcenter = 4.57MHz

4.4 AGC Control

The R820T has built-in RFAGC to achieve the optimal SNR while minimizing distortion. When RF input power increases, the internal power detector is activated to attenuate internal LNA gain in an optimal level. On another hand, when RF input power decreases, internal power detector will increase internal LNA gain to achieve good picture quality.

The IFVGA control is available for the demodulator to control the gain of output VGA. R820T provides a wide range of IFVGA gain from +1dB to +48dB. Demodulator AGC output voltage range from 0.6V to 2.5V.


Figure 4-2: VGA Gain vs AGC control Voltage

5 Package Dimensions and Outline

The R820T is packaged by a Lead-Free 4x4 24-pin Quad Flat No-Lead (QFN) package. The detail package dimensions are listed in Figure 5-1.

Figure 5-1: Package Dimensions and Outline

			E2			D2	2 L		LEAD	FINISH	IEDEC CODE		
	PAD SIZE	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	Pure Tin	PPF	JEDEC CODE
	112X112 MIL	2.15	2.25	2.30	2.15	2.25	2.30	0.35	0.40	0.45	V	Χ	W(V)GGD-8
	113X113 MIL	2.50	2.60	2.65	2.50	2.60	2.65	0.35	0.40	0.45	Χ	7	W(V)GGD-6
	114X114 MIL	2.60	2.70	2.75	2.60	2.70	2.75	0.35	0.40	0.45	V	Χ	W(V)GGD-6
<u>/8\</u>	115X115 MIL	2.40	2.50	2.55	2.40	2.50	2.55	0.35	0.40	0.45	٧	Χ	W(V)GGD-8
	120X120 MIL	2.50	2.60	2.65	2.50	2.60	2.65	0.275	0.325	0.375	V	X	W(V)GGD-8

Note:

Before soldering to system board, R820T need to be baked at $125\,^{\rm o}$ C for more than 8 hours to eliminate moisture contamination.

6 Crystal Requirements

6.1 Crystal Specifications

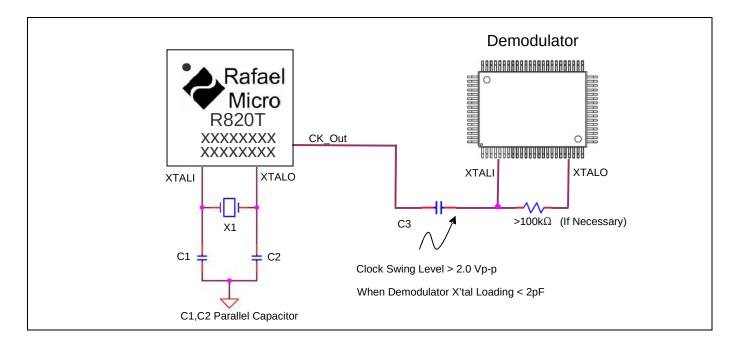
The default crystal frequency for R820T is 16 MHz. The R820T is well accompanied with traditional DIP package crystal. To reduce component count and font factor, a low profile SMD package crystal is recommended. Please contact Rafael Micro application engineering for other crystal frequencies (12, 20, 20.48, 24, 27, 28.8, 32 MHz) applications.

Table 6-1: Crystal Specifications

Parameter	Min	Typical	Max	Units
Frequency Range		16		MHz
ESR			50	Ω
Frequency accuracy		± 30	± 50	ppm
Load Capacitor (CL)		16		рF
Input level to XTAL_P pin when using external clock	120		3300	mVp-p

6.2 Clock Output Swing

The R820T clock output swing is programmable through I2C interface. The IC provides a clock output signal in triangle waveform with output voltage typical at 2.0Vp-p. The output voltage specification assumes an off-chip load impedance of $16pF/10M\Omega$.


Table 6-2: Clock Output Specifications

Parameter	Min	Typical	Max	Units
Clock Output Swing (16pF // 10MΩ)		2.0		Vp-p

6.3 Crystal Parallel Capacitors and Share Crystal

Crystal parallel capacitors are recommended when a default crystal frequency of 16 MHz is implemented. Please contact Rafael Micro application engineering for crystal parallel capacitors using other crystal frequencies. For cost sensitive project, the R820T can share crystal with backend demodulators or baseband ICs to reduce component count. The recommended reference design for crystal loading capacitors and share crystal is shown as below.

Figure 6-1: Crystal Parallel Capacitors and Share Crystal

Note:

Crystal X1=16MHz/ CL=16pF

Bypass capacitor C3=10nF

Crystal parallel capacitors C1=C2=27pF

7 Hardware Tolerance Specifications

To achieve better RF performance, hardware tolerance for tracking filter inductors and RF input inductors is highly recommended in the R820T reference design.

Table 7-1: Value and specification of Tracking filter inductors and RF input inductors (Reference Figure 4-1: Reference Application Schematic)

Reference	L (nH)	Tolerance	Q Min.	L, Q test	Q at	Q at	Q at	S.R.F.	DCR
				frequency	100 MHz	300 MHz	500 MHz	Min.	Max.
L3,	180	0.5 +/- 0.15	8	100 MHz	10	-	ı	500 MHz	3.7 ohm
L7	100	0.5 +/- 0.15	8	100 MHz	10	12	-	700 MHz	2.6 ohm
L2,L6	150	0.5 +/- 0.15	8	100 MHz	10	-	-	550 MHz	3.2 ohm
L9	8.2	0.5 +/- 0.15	8	100 MHz	10	27	30	3600MHz	0.4 ohm

R820T

High Performance Low Power Advanced Digital TV Silicon Tuner Datasheet

Suite 808, Building 53, No.195, Sec.4, Chung Hsing Road, Chutung, HsinChu 310, Taiwan, R.O.C. 310 台灣新竹縣竹東鎮中興路四段 195 號 53 館 808 室

Tel: 886-3-5820868 Fax: 886-3-5820968

www.rafaelmicro.com